电子元器件采购 > 微控制器,MCU,单片机 > TI >

TMS5704357BZWTQQ1 库存 & 价格

  • 制造商:
  • 制造商型号#:
  • 百芯编号#:
  • 价格(CNY): ¥ 679.47
  • 百芯库存:
  • 可供应量:
    149 个在库
  • 产品类别:
  • 产品描述:
    MCU 32Bit ARM Cortex R5F RISC 4Mb Flash 1.2V/3.3V Automotive 337Pin NFBGA
  • 文档: 符合 RoHS 标准 3D模型
TMS5704357BZWTQQ1 购买 TMS5704357BZWTQQ1 库存和价格更新于 2024-06-10 03:50:22
  • 刷新
    器件型号: TMS5704357BZWTQQ1
    百芯编号: CM2695440
    制造商: TI
    价格 ¥679.47
    总计: 411
    MOQ: 1
    库存地点: 香港
    发货日期: 2024/06/15 (预期 )
  • 购买
    *由于库存数量、价格不断波动,请 联系我们 获取型号最新价格和库存。


    百芯智造在2021年建立了一个 元器件检测实验室 ,旨在提供有质量保证的组件。
    TMS5704357BZWTQQ1 规格 显示相似产品 (99+)
    337 Pin
    300 MHz
    300 MHz
    512 KB
    4194304 B
    2 ADC
    125 ℃
    -40 ℃
    TMS5704357BZWTQQ1 数据规格书
    TMS5704357BZWTQQ1 数据手册Datasheet
    229 Pages, 10383 KB
    TMS5704357BZWTQQ1 其它数据手册Datasheet
    32 Pages, 1654 KB
    尺寸 & 包装
    -40℃ ~ 125℃ (TA)
    RoHS Compliant
    • The TMS570LC4357 device is part of the Hercules TMS570 series of high-performance automotive-grade ARM® Cortex®-R-based MCUs. Comprehensive documentation, tools, and software are available to assist in the development of ISO 26262 and IEC 61508 functional safety applications. Start evaluating today with the Hercules TMS570LC43x LaunchPad Development Kit. The TMS570LC4357 device has on-chip diagnostic features including: dual CPUs in lockstep, Built-In Self-Test (BIST) logic for CPU, the N2HET coprocessors, and for on-chip SRAMs; ECC protection on the L1 caches, L2 flash, and SRAM memories. The device also supports ECC or parity protection on peripheral memories and loopback capability on peripheral I/Os.
    • The TMS570LC4357 device integrates two ARM Cortex-R5F floating-point CPUs, operating in lockstep, which offer an efficient 1.66 DMIPS/MHz, and can run up to 300 MHz providing up to 498 DMIPS. The device supports the big-endian [BE32] format.
    • The TMS570LC4357 device has 4MB of integrated flash and 512KB of data RAM with single-bit error correction and double-bit error detection. The flash memory on this device is a nonvolatile, electrically erasable and programmable memory, implemented with a 64-bit-wide data bus interface. The flash operates on a 3.3-V supply input (the same level as the I/O supply) for all read, program, and erase operations. The SRAM supports read and write accesses in byte, halfword, and word modes.
    • The TMS570LC4357 device features peripherals for real-time control-based applications, including two Next Generation High-End Timer (N2HET) timing coprocessors with up to 64 total I/O terminals.
    • The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications. The timer is software-controlled, with a specialized timer micromachine and an attached I/O port. The N2HET can be used for pulse-width-modulated outputs, capture or compare inputs, or GPIO. The N2HET is especially well suited for applications requiring multiple sensor information or drive actuators with complex and accurate time pulses. The High-End Timer Transfer Unit (HTU) can perform DMA-type transactions to transfer N2HET data to or from main memory. A Memory Protection Unit (MPU) is built into the HTU.
    • The Enhanced Pulse Width Modulator (ePWM) module can generate complex pulse width waveforms with minimal CPU overhead or intervention. The ePWM is easy to use and supports both high-side and low-side PWM and deadband generation. With integrated trip zone protection and synchronization with the on-chip MibADC, the ePWM is ideal for digital motor control applications.
    • The Enhanced Capture (eCAP) module is essential in systems where the accurately timed capture of external events is important. The eCAP can also be used to monitor the ePWM outputs or for simple PWM generation when not needed for capture applications.
    • The Enhanced Quadrature Encoder Pulse (eQEP) module directly interfaces with a linear or rotary incremental encoder to get position, direction, and speed information from a rotating machine as used in high-performance motion and position-control systems.
    • The device has two 12-bit-resolution MibADCs with 41 total channels and 64 words of parity-protected buffer RAM. The MibADC channels can be converted individually or by group for special conversion sequences. Sixteen channels are shared between the two MibADCs. Each MibADC supports three separate groupings. Each sequence can be converted once when triggered or configured for continuous conversion mode. The MibADC has a 10-bit mode for use when compatibility with older devices or faster conversion time is desired. One of the channels in MibADC1 and two of the channels in MibADC2 can be used to convert temperature measurements from the three on-chip temperature sensors.
    • The device has multiple communication interfaces: Five MibSPIs; four UART (SCI) interfaces, two with LIN support; four CANs; two I2C modules;one Ethernet Controller; and one FlexRay controller. The SPI provides a convenient method of serial interaction for high-speed communications between similar shift-register type devices. The LIN supports the Local Interconnect standard (LIN 2.1) and can be used as a UART in full-duplex mode using the standard Non-Return-to-Zero (NRZ) format. The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 Mbps. The DCAN is ideal for applications operating in noisy and harsh environments (for example, automotive and industrial fields) that require reliable serial communication or multiplexed wiring. The FlexRay controller uses a dual-channel serial, fixed time base multimaster communication protocol with communication rates of 10 Mbps per channel. A FlexRay Transfer Unit (FTU) enables autonomous transfers of FlexRay data to and from main CPU memory. HTU transfers are protected by a dedicated, built-in MPU. The Ethernet module supports MII, RMII, and Management Data I/O (MDIO) interfaces. The I2C module is a multimaster communication module providing an interface between the microcontroller and an I2C-compatible device through the I2C serial bus. The I2C module supports speeds of 100 and 400 kbps.
    • The Frequency-Modulated Phase-Locked Loop (FMPLL) clock module multiplies the external frequency reference to a higher frequency for internal use. The Global Clock Module (GCM) manages the mapping between the available clock sources and the internal device clock domains.
    • The device also has two External Clock Prescaler (ECP) modules. When enabled, the ECPs output a continuous external clock on the ECLK1 and ECLK2 balls. The ECLK frequency is a user-programmable ratio of the peripheral interface clock (VCLK) frequency. This low-frequency output can be monitored externally as an indicator of the device operating frequency.
    • The Direct Memory Access (DMA) controller has 32 channels, 48 peripheral requests, and ECC protection on its memory. An MPU is built into the DMA to protect memory against erroneous transfers.
    • The Error Signaling Module (ESM) monitors on-chip device errors and determines whether an interrupt or external Error pin/ball (nERROR) is triggered when a fault is detected. The nERROR signal can be monitored externally as an indicator of a fault condition in the microcontroller.
    • The External Memory Interface (EMIF) provides a memory extension to asynchronous and synchronous memories or other slave devices.
    • A Parameter Overlay Module (POM) is included to enhance the debugging capabilities of application code. The POM can reroute flash accesses to internal RAM or to the EMIF, thus avoiding the reprogramming steps necessary for parameter updates in flash. This capability is particularly helpful during real-time system calibration cycles.
    • Several interfaces are implemented to enhance the debugging capabilities of application code. In addition to the built-in ARM Cortex-R5F CoreSight debug features, the Embedded Cross Trigger (ECT) supports the interaction and synchronization of multiple triggering events within the SoC. An External Trace Macrocell (ETM) provides instruction and data trace of program execution. For instrumentation purposes, a RAM Trace Port (RTP) module is implemented to support high-speed tracing of RAM and peripheral accesses by the CPU or any other master. A Data Modification Module (DMM) gives the ability to write external data into the device memory. Both the RTP and DMM have no or minimal impact on the program execution time of the application code.
    • With integrated safety features and a wide choice of communication and control peripherals, the TMS570LC4357 device is an ideal solution for high-performance real-time control applications with safety-critical View datasheet View product folder


    百芯智造承诺产品质量和安全通过ISO 9001、ISO 13485、ISO 45001、UL、RoHS、CQC 和 REACH 认证
    查看我们的认证 >
    •  此处条款仅供参考,实际条款以销售报价为准。
      - 订购时请确认产品规格。
      - MOQ 是指购买每个零件所需的最小起订量。
      - 如果您有特殊的订购说明,请在订购页面注明。
      - 装运前会进行检验 (PSI)。
      - 您可以随时给我们发邮件查询订单状态。
      - 包裹发货后无法取消订单。
    • - 提前电汇(银行转账),也可选择PayPal。
      - 仅限现金转账。(不接受支票和账单转账。)
      - 客户负责支付所有可能的费用,包括销售税、增值税和海关费用等。
      - 如果您需要详细的发票或税号,请给我们发送电子邮件。
    • - 可选择顺丰或跑腿。
      - 您可以选择是通过您的运费帐户收取运费还是由我们收取。
      - 偏远地区请提前与物流公司确认。
      (在这些地区送货可能会收取额外费用(35-50 美元)。)
      - 交货日期:通常为 2 到 7 个工作日。
      - 您的订单发货后将发送跟踪号。
    • - 由百芯智造仓库仔细检查和包装
      - 真空包装
      - 防静电包装
      - 防震泡沫
    • - 收入质量控制 (IQC),800多家合格经销商。
      - 500m² 高级元器件检测实验室、假冒检测、RoHS 合规性等
      - 2000㎡数码元器件仓库,恒温恒湿
      - 开盖检查
      - X-Ray检查
      - XRF检查
      - 电气测试
      - 外观检测
    • - 不合格和假冒检测
      - 故障分析
      - 电气测试
      - 生命周期和可靠性测试
      了解更多 >


    黄经理 - 百芯智造销售经理在线,5 分钟前
    您的邮箱 *
    消息 *